If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.8x^2-24x=0
a = 0.8; b = -24; c = 0;
Δ = b2-4ac
Δ = -242-4·0.8·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-24}{2*0.8}=\frac{0}{1.6} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+24}{2*0.8}=\frac{48}{1.6} =30 $
| -2(2p+3)=2p | | 7+d=2d-1 | | 18x-(7x-9)=53 | | 210=60+(15+7)w | | 3x+10=20=3x=10 | | 7+d/3=2d-1 | | 3p+12.33=50 | | 20-3x=620 | | 2/3p+3.P=3/5 | | 4r2-r=0 | | 24+8n=6(7n+4) | | 12.6=-1.3k-3.7k | | -2x-2-5=10 | | 1.6h72=4h-30 | | n=9*n+13.5 | | 24+8n=6 | | 4xx-25=13 | | 6x-3.8x=-1.98 | | 5x−40=2(5x−10) | | X^2+4=3x^2-7x | | -4x-11+7x=12x-5+13 | | 108•(2-8)=s | | x0.6=0.8 | | 14-23x=60x+80 | | 5x2+37x-130=0 | | 7x+1-8x=8(-x+7) | | 3(2x-14)+x=15-(-9x-5 | | 1/6-4/5w=1/5w+19/6 | | 120-24c+4c=-20 | | −2u+7=5u+14 | | 6x+7)+(13x+21)=180 | | 2×n/6=3×n+9 |